Cum se simplifică expresiile raționale: pas cu pas

Posted on
Autor: Randy Alexander
Data Creației: 23 Aprilie 2021
Data Actualizării: 18 Noiembrie 2024
Anonim
Simplifying Rational Expressions
Video: Simplifying Rational Expressions

Conţinut

Înainte de a începe să simplificați sau să manipulați altfel expresiile raționale, luați un moment pentru a trece în revistă care este expresia rațională în sine: O fracție cu un polinom atât în ​​numerotator cât și în numitor. Sau, pentru a spune altfel, un raport de la un polinom la altul. După ce ați identificat o expresie rațională, procesul de simplificare a acesteia se reduce până la trei pași.

Pașii în simplificarea expresiilor raționale

Procesul de simplificare a funcțiilor raționale urmează o foaie de parcurs destul de simplă. Primul lucru pe care trebuie să-l faceți este să combinați termenii, dacă nu aveți deja, pentru a vă ajuta să vedeți clar polinoamele.

Apoi, factorizați fiecare polinom. Uneori, tot ce trebuie să faci este să scrii fiecare termen. De exemplu, este clar că 4x (care este de fapt un polinom, chiar dacă are un singur termen) are doi factori: 4 și X. Dar, cu polinoame mai complicate, cel mai bun instrument este de a recunoaște adesea tiparele pentru anumite tipuri de polinoame despre care ai aflat deja. De exemplu, dacă ai acordat o atenție deosebită formulelor tale, poți să-ți amintești că un polinom al formei A2 - b2 factori în afara (a + b) (a - b).

Odată ce polinoamele dvs. sunt pe deplin luate în considerare, ultimul pas este anularea oricăror factori comuni care apar atât în ​​numerotator cât și în numitor. Rezultatul este polinomul dvs. simplificat.

sfaturi

O atenționare despre denominator

S-ar putea să nu fiți surprinși să auziți că există o mică captură aici. De obicei domeniul (sau setul de posibile) X valori) pentru expresia dvs. rațională se presupune a fi setul tuturor numerelor reale. Dar dacă se întâmplă ceva pentru a face numitorul fracției tale zero, rezultatul este o fracție nedefinită.

Ce ar face numitorul dvs. zero? De obicei, este nevoie de puțin examen pentru a afla. De exemplu, dacă numitorul fracției tale a fost redus la factori (x + 2) (x - 2), apoi valoarea X = -2 ar face primul factor egal cu zero și X = 2 ar face al doilea factor egal cu zero.

Deci, ambele valori, -2 și 2, trebuie excluse din domeniul expresiei tale raționale. De obicei, veți nota acest lucru cu semnul „nu egal” sau ≠. De exemplu, dacă trebuie să excludeți -2 și 2 din domeniu, ar trebui să scrieți x ≠ -2, 2.

Simplificarea expresiilor raționale: exemple

Acum că ai înțeles procesul de simplificare a expresiilor raționale, este timpul să te uiți la câteva exemple.

Exemplul 1: Simplificați expresia rațională (X2 - 4) / (x2+ 4x + 4)

Nu există termeni similari de combinat aici, așa că puteți sări peste primul pas. În continuare, cu ochii tăinuți și puțină practică, puteți observa că numerotatorul și numitorul sunt ușor facturați:

(x + 2) (x - 2) / (x + 2) (x + 2)

Poate că vei vedea și asta (x + 2) este un factor atât în ​​numărător, cât și în numitor. După ce anulați factorul partajat, ați rămas cu:

(x - 2) / (x + 2)

Ați simplificat expresia rațională în măsura în care puteți, dar mai există un lucru de făcut: Identificați orice „zero” sau rădăcini care ar avea ca rezultat o fracțiune nedefinită, astfel încât să le puteți exclude pe cele din domeniu. În acest caz, este ușor de văzut prin examinare că atunci când X = -2, factorul din partea de jos va fi egal cu zero. Deci, expresia rațională simplificată este de fapt:

(x - 2) / (x + 2), x ≠ -2

Exemplul 2: Simplificați expresia rațională x / (x2 - 4x)

Nu există termeni similari de combinat, așa că puteți merge direct la factoring prin examinare. Nu este prea greu de descoperit că puteți factoriza X în afara termenului de jos, care vă oferă:

x / x (x - 4)

Puteți anula X factor atât de la numărător cât și de la numitor, ceea ce vă lasă cu:

1 / (x - 4)

Acum, expresia rațională este simplificată, dar trebuie să notați oricare X valori care ar rezulta într-o fracție nedefinită. În acest caz, X = 4 ar întoarce o valoare de zero în numitor. Deci răspunsul dvs. este:

1 / (x - 4), x ≠ 4