Cum să facem Trinomiale cubice

Posted on
Autor: Louise Ward
Data Creației: 5 Februarie 2021
Data Actualizării: 20 Noiembrie 2024
Anonim
Factorising cubic functions: The kx method
Video: Factorising cubic functions: The kx method

Conţinut

Trinomele cubice sunt mai dificil de factorizat decât polinoamele cvadratice, în principal pentru că nu există o formulă simplă de folosit ca ultimă soluție, așa cum există cu formula cvadratică. (Există o formulă cubică, dar este absurd de complicat). Pentru majoritatea trinomurilor cubice, veți avea nevoie de un calculator grafic.

Trinomiale cubice ale axei formei ^ 3 + Bx + ^ 2 + Cx

    Extrage cel mai mare factor comun al trinomului. Acesta este egal cu k ori x, unde k este cel mai mare factor comun al celor trei constanți constanți A, B și C ai polinomului. De exemplu, cel mai mare factor comun al trinomului 3x ^ 3 - 6x ^ 2 - 9x este 3x, deci polinomul este egal cu 3x ori mai mare decât trinomul x ^ 2 - 2x -3 sau 3x * (x ^ 2 - 2x - 3).

    Factorizați polinomul quadratic Ax ^ 2 + Bx + C în polinomul de mai sus, găsind două numere a căror sumă este egală cu B și al cărui produs este egal cu A ori C. De exemplu, polinomul x ^ 2 - 2x - 3 factori ca ( x - 3) (x + 1).

    Scrieți forma factorizată a trinomului cubic înmulțind GCF (găsit în Pasul 1) cu forma factorizată a polinomului. De exemplu, polinomul de mai sus este egal cu 3x * (x - 3) (x - 1).

Alte Trinomiale cubice

    Grafică polinomul pe calculatorul tău. Ghiciți valorile interceptelor x (puncte în care graficul liniei traversează axa x). Verificați ghicitul înlocuind aceste valori ale lui x în cele trinomiale simultan. Dacă trinomul este egal cu zero, valoarea x este o interceptare.

    Verificați dacă interceptările x sunt corecte prin împărțirea polinomului la binomial (x - a), unde a este egală cu valoarea x a interceptării x pe care o testați. O modalitate simplă de a împărți polinoamele este diviziunea sintetică. Binomul (x - a) este un factor al polinomului dacă și numai dacă se împarte cu restul de zero.

    După ce ați verificat că toate interceptările x sunt corecte, rescrieți polinomul în formă factorată ca (x - a) (x - b) (x - c), unde a, b și c sunt interceptele x ale ecuației . Unele dintre interceptări pot fi repetate, caz în care forma factorizată va fi (x - a) (x-b) ^ 2 sau (x - a) ^ 3.